

Edition 4.2 2024-12 CONSOLIDATED VERSION

INTERNATIONAL STANDARD

Low-voltage electrical installations -

Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.130.01, 91.140.50

ISBN 978-2-8327-0119-5

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD		7
530.1 Scor	De	
530.2 Norr	native references	ξ
530.3 Tern	ns and definitions	12
530.4 Gen	eral and common requirements	15
	tion of equipment	
	or protection against indirect contact by automatic disconnection of	
	, , , , , , , , , , , , , , , , , , ,	
531.1 Ove	rcurrent protective devices	
531.1.1	TN systems	
531.1.2	TT systems	
531.1.3	IT systems	
531.2 Res i	dual current protective devices	
531.2.1	General conditions of installation	
531.2.2	Selection of devices according to their method of application	
531.2.3	TN systems	
531.2.4	TT systems	
531.2.5	IT systems	
531.3 Insu	lation monitoring devices	
	t for protection against electric shock	
	eral	
	ces for automatic disconnection of supply	
	General	
	Overcurrent protective devices	
	Residual current protective devices	
	pment for protection by double or reinforced insulation	
•	General	
	pment for protection by electrical separation	
	pment for protection by extra-low-voltage provided by SELV and PELV	
	ems	25
	Sources for SELV or PELV systems	
531.5.2	Selection of plugs and socket-outlets	25
531.6 Devi	ces for additional protection	25
531.7 Mon	itoring devices	26
532 Devices a	nd precautions for protection against thermal effects	26
532.1 Gen	eral	26
	ations with a particular risk of fire	
532.2.1	General	
532.2.2	Locations with external influences BD2, BD3 or BD4	
532.2.3	Locations with external influences BE2	27
532.2.3.1	General	27
532.2.3.2	Selection of residual current protective devices (RCD)	
532.2.3.3	Selection of residual current monitoring device (RCM) in IT systems	
532.2.3.4	Selection of insulation monitoring devices (IMDs) in IT systems	
	ction of arc fault detection devices (AFDD)	
	or protection against overcurrent	
	eral requirements	
	1	

533.1.1	General	28
533.1.2	Compliance with standards	28
533.1.2.1	General	28
533.1.2.2	Applicability of devices	28
533.1.3	Fuses	29
533.2 Se	election of devices for protection against overload current	29
533.2.1	General	29
533.2.2	Presence of harmonic currents	30
533.2.3	Unequal current sharing between parallel conductors	30
533.3 Se	election of devices for protection against short-circuit current	30
533.3.1	Thermal stresses	
533.3.1.1	Cables and insulated conductors	30
533.3.1.2	Busbar trunking systems and powertracks	30
533.3.2	Breaking capacity	31
533.4 Po	sitioning of overcurrent protection devices	
533.4.1	General	31
533.4.2	Positioning of devices for overload protection	31
533.4.3	- · · · · · · · · · · · · · · · · · · ·	
533.5 Co	o-ordination of overload and short-circuit protective functions	
533.5.1		
533.5.2	·	
534 Devices	for protection against transient overvoltages	
	eneral	
	oid	
	oid	
	election and erection of SPDs	
534.4.1	SPD location and SPD test class	
534.4.2	Transient overvoltage protection requirements	
534.4.3	Connection types	
534.4.4	• •	
534.4.5	Protection of the SPD against overcurrent	
534.4.6	Fault protection	
534.4.7	SPDs installation in conjunction with RCDs	
534.4.8	Connections of the SPD.	
534.4.9	Effective protective distance of SPDs	
	Connecting conductors of SPDs	
	nation of protective devices	
	electivity between overcurrent protective devices	
535.1.1	General	
535.1.2	Partial selectivity	
535.1.3	Full selectivity	
535.1.4	Total selectivity	
535.1.5	Enhanced selectivity	
	o-ordination between residual current protective devices and OCPDs	
	electivity between residual current protective devices	
	electivity of RCD and OCPD	
	ombined short-circuit protection of OCPDs	
	n and switching	
536.2 ls	olation	51

536.2.1 General	51
536.2.2 Devices for isolation	52
536.3 Switching-off for mechanical maintenance	53
536.3.1 General	53
536.3.2 Devices for switching-off for mechanical maintenance	
536.4 Emergency switching	
536.4.1 General	
536.4.2 Devices for emergency switching-off	
536.4.3 Devices for emergency stopping	
536.5 Functional switching (control)	
536.5.1 General	
536.5.2 Devices for functional switching	
537 Monitoring	
537.1 General	
537.1.1 Monitoring devices	
537.1.2 Selection of insulation monitoring devices (IMDs)	
537.1.3 Selection of residual current monitoring devices (RCMs)	
537.2 IT systems for continuity of supply	
537.2.2 Insulation monitoring devices (IMDs)	
537.2.3 Installation of IMDs	
537.3 IT public distribution system	
537.4 Off-line systems in TN, TT and IT systems	
Annex A (informative) Position of devices for overload protection	
A.1 General	
A.2 Cases where overload protection need not be placed at the origin of the	
branch circuit	59
Annex B (informative) Position of devices for short-circuit protection	61
B.1 General	61
B.2 Cases where short-circuit protection need not be placed at the origin of	
branch circuit	61
Annex C (informative) SPD installation – Examples of installation diagrams according to system configurations	63
C.1 TT system – 3 phase supply plus neutral	
C.2 TN-C and TN-C-S systems – 3 phase supply	
C.3 TN-S system – 3 phase supply plus neutral	
C.4 IT system – 3 phase supply with or without neutral	
Annex D (informative) Installation supplied by overhead lines	
Annex E (normative) Reference standards for devices for isolation and switching	
Annex F (informative) List of notes concerning certain countries	
	13
Annex G (informative) Description of the different types of residual current devices (RCDs)	88
G.1 Description of RCD types	
•	88
G.2 Examples of use of RCD types	
- 71	89
Annex H (informative) Additional information for the application of DC SPDs	89 92
	89 92 92

Figure 1 – Example of installation of class I, class II and class III tested SPDs	35
Figure 2 – Connection type CT1 (4+0-configuration) for a three-phase system with neutral	36
Figure 3 – Connection type CT1 (3+0-configuration) for a three-phase system	36
Figure 4 – Connection type CT2 (e.g. 3+1-configuration) for a three-phase system with neutral	37
Figure 5 – Connection points of an SPD assembly	42
Figure 6 – Example of overcurrent protection in the SPD branch by using a dedicated external overcurrent protective device	43
Figure 7 – Protective device, which is a part of the installation, also used to protect the SPD	44
Figure 8 – Connection of the SPD	46
Figure 9 – Example of installation of an SPD in order to decrease lead length of SPD supply conductors	47
Figure 10 – Example of selectivity	49
Figure 11 – Example of currents and their correlation to selectivity	50
Figure 12 – Example of combined short-circuit protection of OCPDs	51
Figure A.1 – Overload protective device (P_2) not at the origin of branch circuit (B)	59
Figure A.2 – Overload protective device (P ₂) installed within 3 m of the origin of the branch circuit (B)	60
Figure B.1 – Limited change of position of short-circuit protective device (P ₂) on a branch circuit	61
Figure B.2 – Short-circuit protective device P ₂ installed at a point on the supply side of the origin of a branch circuit	62
Figure C.1 – Example of SPDA installation with connexion type CT2 on the supply side (upstream) of the main RCD in TT system	63
Figure C.2 – Example of SPD installation with connexion type CT2 on the supply side (upstream) of the main RCD in TT system	64
Figure C.3 – Example of SPDA installation on the load side (downstream) of the main RCD in TT system	65
Figure C.4 – Example of SPD installation on the load side (downstream) of the RCD in TT system	66
Figure C.5 – Example of SPDA installation in TN-C system	67
Figure C.6 – Example of SPD installation with connexion type CT1 in TN-C system	68
Figure C.7 – Example of SPD installation in TN-C-S system where the PEN is separated into PE and N at the origin of the installation (upstream of the SPD)	69
Figure C.8 – Example of SPDs installation in TN-C-S in different distribution boards	70
Figure C.9 – Example of SPDA installation in TN-S system	71
Figure C.10 – Example of SPDs installation in TN-S	72
Figure C.11 – Example of SPDA installation in IT system with neutral	73
Figure C.12 – Example of SPD installation in IT system without neutral	74
Figure C.13 – Example of SPD installation in IT system with neutral	75
Figure F.1 – Single user	84
Figure F.2 – Several users	84
Figure F.3 – Lamp control circuit with switching in the neutral conductor	86
Figure G 1 – Possible earth fault currents in systems with semiconductors	91

Table 1 – Required rated impulse voltage of equipment	
Table 2 – $U_{ m C}$ of the SPD dependent on supply system configuration	
Table 3 – Nominal discharge current (I_{n}) in kA depending on supply system and connection type	41
Table 4 – Selection of impulse discharge current ($I_{\mbox{imp}}$) where the building is protected against direct lightning strike	41
Table 5 – Connection of the SPD dependent on supply system	45
Table D.1 – Selection of impulse discharge current (I _{imp})	76
Table E.1 – Devices for isolation and switching	77

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW-VOLTAGE ELECTRICAL INSTALLATIONS -

Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendments has been prepared for user convenience.

IEC 60364-5-53 edition 4.2 contains the fourth edition (2019-02) [documents 64/2352/FDIS and 64/2359/RVD], its amendment 1 (2020-12) [documents 64/2457/FDIS and 64/2465/RVD] and its amendment 2 (2024-12) [documents 64/2648/FDIS and 64/2738/RVD].

In this Redline version, a vertical line in the margin shows where the technical content is modified by amendments 1 and 2. Additions are in green text, deletions are in strikethrough red text. A separate Final version with all changes accepted is available in this publication.

International Standard IEC 60364 has been prepared by IEC technical committee 64: Electrical installations and protection against electric shock.

This fourth edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) revision of all clauses except 531 and 534;
- b) introduction of a new Clause 537 Monitoring;
- c) Clause 530 contains all normative references and all terms and definitions.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The reader's attention is drawn to the fact that Annex F lists all of the "in-some-country" clauses on differing practices relating to the subject of this standard.

A list of all parts in the IEC 60364 series, published under the general title *Low-voltage electrical installations*, can be found on the IEC website.

The committee has decided that the contents of this document and its amendments will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- · withdrawn, or
- revised.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

LOW-VOLTAGE ELECTRICAL INSTALLATIONS -

Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

530.1 Scope

This document provides requirements for:

- a) isolation, switching, control and monitoring, and
- b) selection and erection of:
 - 1) devices for isolation, switching, control and monitoring, and
 - 2) devices to achieve compliance with measures of protection for safety.

530.2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60204-1, Safety of machinery – Electrical equipment of machines – Part 1: General requirements

IEC 60269-2, Low-voltage fuses – Part 2: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application) – Examples of standardized systems of fuses A to K

IEC 60269-3, Low-voltage fuses – Part 3: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications) – Examples of standardized systems of fuses A to F

IEC 60269-4, Low-voltage fuses – Part 4: Supplementary requirements for use-links for the protection of semiconductor devices

IEC 60309 (all parts), Plugs, socket-outlets and couplers for industrial purposes

IEC 60364 (all parts), Low-voltage electrical installations

IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock IEC 60364-4-41:2005/AMD1:2017

IEC 60364-4-42:2010, Low-voltage electrical installations – Part 4-42: Protection for safety – Protection against thermal effects IEC 60364-4-42:2010/AMD1:2014

IEC 60364-4-43:2008, Low-voltage electrical installations – Part 4-43: Protection for safety – Protection against overcurrent

IEC 60364-4-44:2007, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances IEC 60364-4-44:2007/AMD1:2015

IEC 60364-5-55, Electrical installations of buildings – Part 5-55: Selection and erection of electrical equipment – Other equipment

IEC 60364-6:2016, Low voltage electrical installations- Part 6: Verification

IEC 60417 (all parts), Graphical symbols for use on equipment

IEC 60664-1:2007, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 60669-1, Switches for household and similar fixed-electrical installations – Part 1: General requirements

IEC 60669-2-1, Switches for household and similar fixed electrical installations – Part 2-1: Particular requirements – Electronic switches

IEC 60669-2-2, Switches for household and similar fixed electrical installations – Part 2-2: Particular requirements – Electromagnetic remote-control switches (RCS)

IEC 60669-2-3, Switches for household and similar fixed electrical installations – Part 2-3: Particular requirements – Time-delay switches (TDS)

IEC 60669-2-4, Switches for household and similar fixed electrical installations – Part 2-4: Particular requirements – Isolating switches

IEC 60669-2-5, Switches for household and similar fixed electrical installations – Part 2-5: Particular requirements – Switches and related accessories for use in home and building electronic systems (HBES)

IEC 60669-2-6, Switches for household and similar fixed electrical installations – Part 2-6: Particular requirements – Fireman's switches for exterior and interior signs and luminaires

IEC 60670-24, Boxes and enclosures for electrical accessories for household and similar fixed electrical installations – Part 24: Particular requirements for enclosures for housing protective devices and other power dissipating electrical equipment

IEC 60884 (all parts), Plugs and socket-outlets for household and similar purposes

IEC 60898 (all parts), Electrical accessories – Circuit-breakers for overcurrent protection for household and similar installations

IEC 60906 (all parts), IEC system of plugs and socket-outlets for household and similar purposes

IEC 60947-2:2016, Low-voltage switchgear and controlgear – Part 2: Circuit-breakers

IEC 60947-3, Low-voltage switchgear and controlgear – Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units

IEC 60947-4-1, Low-voltage switchgear and controlgear – Part 4-1: Contactors and motor-starters – Electromechanical contactors and motor-starters

IEC 60947-4-2, Low-voltage switchgear and controlgear – Part 4-2: Contactors and motor-starters – AC semiconductor motor controllers and starters

IEC 60947-4-3, Low-voltage switchgear and controlgear – Part 4-3: Contactors and motor-starters – AC semiconductor controllers and contactors for non-motor loads

IEC 60947-5-1, Low-voltage switchgear and controlgear – Part 5-1: Control circuit devices and switching elements – Electromechanical control circuit devices

IEC 60947-6-1, Low-voltage switchgear and controlgear – Part 6-1: Multiple function equipment – Transfer switching equipment

IEC 60947-6-2, Low-voltage switchgear and controlgear – Part 6-2: Multiple function equipment – Control and protective switching devices (or equipment) (CPS)

IEC 61008 (all parts), Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs)

IEC 61009 (all parts), Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs)

IEC 61095, Electromechanical contactors for household and similar purposes

IEC 61439-2, Low-voltage switchgear and controlgear assemblies – Part 2: Power switchgear and controlgear assemblies

IEC 61439-3, Low-voltage switchgear and controlgear assemblies – Part 3: Distribution boards intended to be operated by ordinary persons (DBO)

IEC 61439-6, Low-voltage switchgear and controlgear assemblies – Part 6: Busbar trunking systems (busways)

IEC 61534 (all parts), Powertrack systems

IEC 61557-8, Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems

IEC 61557-9, Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 9: Equipment for insulation fault location in IT systems

IEC 61643-11, Low-voltage surge protective devices – Part 11: Surge protective devices connected to low-voltage power systems – Requirements and test methods

IEC 61643-12, Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power distribution systems – Selection and application principles

IEC 61984:2008, Connectors – Safety requirements and tests

IEC 61995 (all parts), Devices for the connection of luminaires for household and similar purposes

IEC 62020, Electrical accessories – Residual current monitors for household and similar uses (RCMs)

IEC 62208, Empty enclosures for low-voltage switchgear and controlgear assemblies – General requirements

IEC 62305 (all parts), Protection against lightning

IEC 62423, Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses

IEC 62606, General requirements for arc fault detection devices

IEC 62626-1, Low-voltage switchgear and controlgear enclosed equipment – Part 1: Enclosed switch-disconnectors outside the scope of IEC 60947-3 to provide isolation during repair and maintenance work

CONTENTS

FOREWORD		6
530.1 Sco	pe	8
530.2 Nori	mative references	8
530.3 Terr	ns and definitions	11
530.4 Gen	eral and common requirements	14
530.5 Ered	ction of equipment	14
531 Equipmen	nt for protection against electric shock	14
531.1 Gen	eral	14
531.2 Dev	ices for automatic disconnection of supply	15
531.2.1	General	15
531.2.2	Overcurrent protective devices	15
531.2.3	Residual current protective devices	17
531.3 Equ	ipment for protection by double or reinforced insulation	20
531.3.1	General	20
•	ipment for protection by electrical separation	22
531.5 Equ	ipment for protection by extra-low-voltage provided by SELV and PELV	22
531.5.1	ems	
531.5.1	·	
00	ices for additional protection	
	nitoring devices	
	and precautions for protection against thermal effects	
	eral	
	ations with a particular risk of fire	
532.2.1	Locations with external influences BD2, BD3 or BD4	
532.2.2	Locations with external influences BD2, BD3 of BD4	
532.2.3 532.2.3.1	General	
532.2.3.1	Selection of residual current protective devices (RCD)	
532.2.3.3	Selection of residual current protective devices (RCD)	
532.2.3.4	Selection of insulation monitoring devices (IMDs) in IT systems	
	ection of arc fault detection devices (AFDD)	
	or protection against overcurrent	
	peral requirements	
533.1.1	General	
533.1.2 533.1.2.1	Compliance with standards	
533.1.2.1	Applicability of devices	
533.1.2.2	Fuses	
	ection of devices for protection against overload current	
533.2.1	General	
533.2.1	Presence of harmonic currents	
533.2.2	Unequal current sharing between parallel conductors	
	ection of devices for protection against short-circuit current	
533.3.1	Thermal stresses	
533.3.1.1	Cables and insulated conductors	
533.3.1.1	Busbar trunking systems and powertracks	
000.0.1.2	Buobar danking systems and powerdacks	41

*AIVID2.2024 C	73 V @ 1EC 2024	
533.3.2	Breaking capacity	28
533.4 Posi	tioning of overcurrent protection devices	28
533.4.1	General	28
533.4.2	Positioning of devices for overload protection	28
533.4.3	Positioning of devices for short-circuit protection	29
533.5 Co-d	ordination of overload and short-circuit protective functions	30
533.5.1	Protective functions provided by one device	30
533.5.2	Protective functions provided by separate devices	30
534 Devices fo	or protection against transient overvoltages	30
534.1 Gen	eral	30
534.2 Void		30
534.3 Void		30
534.4 Sele	ction and erection of SPDs	30
534.4.1	SPD location and SPD test class	30
534.4.2	Transient overvoltage protection requirements	32
534.4.3	Connection types	32
534.4.4	Selection of SPDs	34
534.4.5	Protection of the SPD against overcurrent	38
534.4.6	Fault protection	40
534.4.7	SPDs installation in conjunction with RCDs	41
534.4.8	Connections of the SPD	41
534.4.9	Effective protective distance of SPDs	43
534.4.10	Connecting conductors of SPDs	44
535 Co-ordina	tion of protective devices	44
535.1 Sele	ctivity between overcurrent protective devices	44
535.1.1	General	44
535.1.2	Partial selectivity	45
535.1.3	Full selectivity	45
535.1.4	Total selectivity	45
535.1.5	Enhanced selectivity	45
535.2 Co-d	ordination between residual current protective devices and OCPDs	46
535.3 Sele	ctivity between residual current protective devices	46
535.4 Sele	ctivity of RCD and OCPD	46
535.5 Com	bined short-circuit protection of OCPDs	46
536 Isolation a	and switching	47
536.2 Isola	ation	47
536.2.1	General	47
536.2.2	Devices for isolation	48
536.3 Swit	ching-off for mechanical maintenance	49
536.3.1	General	49
536.3.2	Devices for switching-off for mechanical maintenance	49
536.4 Eme	rgency switching	50
536.4.1	General	
536.4.2	Devices for emergency switching-off	50
536.4.3	Devices for emergency stopping	
536.5 Fund	ctional switching (control)	
536.5.1	General	
536.5.2	Devices for functional switching	
537 Monitoring	1	52

537.1 General	52
537.1.1 Monitoring devices	52
537.1.2 Selection of insulation monitoring devices (IMDs)	52
537.1.3 Selection of residual current monitoring devices (RCMs)	52
537.2 IT systems for continuity of supply	52
537.2.1 General	52
537.2.2 Insulation monitoring devices (IMDs)	53
537.2.3 Installation of IMDs	53
537.3 IT public distribution system	53
537.4 Off-line systems in TN, TT and IT systems	53
Annex A (informative) Position of devices for overload protection	55
A.1 General	55
A.2 Cases where overload protection need not be placed at the origin of the branch circuit	55
Annex B (informative) Position of devices for short-circuit protection	57
B.1 General	57
B.2 Cases where short-circuit protection need not be placed at the origin of branch circuit	
Annex C (informative) SPD installation – Examples of installation diagrams according to system configurations	59
C.1 TT system – 3 phase supply plus neutral	59
C.2 TN-C and TN-C-S systems – 3 phase supply	63
C.3 TN-S system – 3 phase supply plus neutral	67
C.4 IT system – 3 phase supply with or without neutral	
Annex D (informative) Installation supplied by overhead lines	72
Annex E (normative) Reference standards for devices for isolation and switching	73
Annex F (informative) List of notes concerning certain countries	75
Annex G (informative) Description of the different types of residual current devices (RCDs)	84
G.1 Description of RCD types	
G.2 Examples of use of RCD types	
Annex H (informative) Additional information for the application of DC SPDs	
H.1 General	
H.2 Parameters for the selection of SPDs in DC applications	
Bibliography	
ыынодгарну	03
Figure 1 – Example of installation of class I, class II and class III tested SPDs	32
Figure 2 – Connection type CT1 (4+0-configuration) for a three-phase system with neutral	33
Figure 3 – Connection type CT1 (3+0-configuration) for a three-phase system	33
Figure 4 – Connection type CT2 (e.g. 3+1-configuration) for a three-phase system with neutral	34
Figure 5 – Connection points of an SPD assembly	38
Figure 6 – Example of overcurrent protection in the SPD branch by using a dedicated external overcurrent protective device	
Figure 7 – Protective device, which is a part of the installation, also used to protect the SPD	
Figure 8 – Connection of the SPD	42

Figure 9 – Example of installation of an SPD in order to decrease lead length of SPD supply conductors	43
Figure 10 – Example of selectivity	45
Figure 11 – Example of currents and their correlation to selectivity	46
Figure 12 – Example of combined short-circuit protection of OCPDs	47
Figure A.1 – Overload protective device (P2) not at the origin of branch circuit (B)	55
Figure A.2 – Overload protective device (P ₂) installed within 3 m of the origin of the branch circuit (B)	56
Figure B.1 – Limited change of position of short-circuit protective device (P ₂) on a branch circuit	57
Figure B.2 – Short-circuit protective device P ₂ installed at a point on the supply side of the origin of a branch circuit	58
Figure C.1 – Example of SPDA installation with connexion type CT2 on the supply side (upstream) of the main RCD in TT system	59
Figure C.2 – Example of SPD installation with connexion type CT2 on the supply side (upstream) of the main RCD in TT system	60
Figure C.3 – Example of SPDA installation on the load side (downstream) of the main RCD in TT system	61
Figure C.4 – Example of SPD installation on the load side (downstream) of the RCD in TT system	62
Figure C.5 – Example of SPDA installation in TN-C system	63
Figure C.6 – Example of SPD installation with connexion type CT1 in TN-C system	64
Figure C.7 – Example of SPD installation in TN-C-S system where the PEN is separated into PE and N at the origin of the installation (upstream of the SPD)	65
Figure C.8 – Example of SPDs installation in TN-C-S in different distribution boards	66
Figure C.9 – Example of SPDA installation in TN-S system	67
Figure C.10 – Example of SPDs installation in TN-S	68
Figure C.11 – Example of SPDA installation in IT system with neutral	69
Figure C.12 – Example of SPD installation in IT system without neutral	70
Figure C.13 – Example of SPD installation in IT system with neutral	71
Figure F.1 – Single user	
Figure F.2 – Several users	80
Figure F.3 – Lamp control circuit with switching in the neutral conductor	82
Figure G.1 – Possible earth fault currents in systems with semiconductors	87
Table 2 – $U_{ extsf{C}}$ of the SPD dependent on supply system configuration	36
Table 3 – Nominal discharge current (I_{n}) in kA depending on supply system and connection type	37
Table 4 – Selection of impulse discharge current ($I_{\mbox{imp}}$) where the building is protected against direct lightning strike	
Table 5 – Connection of the SPD dependent on supply system	
Table D.1 – Selection of impulse discharge current (I_{imp})	
Table E.1 – Devices for isolation and switching	73

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW-VOLTAGE ELECTRICAL INSTALLATIONS -

Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendments has been prepared for user convenience.

IEC 60364-5-53 edition 4.2 contains the fourth edition (2019-02) [documents 64/2352/FDIS and 64/2359/RVD], its amendment 1 (2020-12) [documents 64/2457/FDIS and 64/2465/RVD] and its amendment 2 (2024-12) [documents 64/2648/FDIS and 64/2738/RVD].

This Final version does not show where the technical content is modified by amendments 1 and 2. A separate Redline version with all changes highlighted is available in this publication.

International Standard IEC 60364 has been prepared by IEC technical committee 64: Electrical installations and protection against electric shock.

This fourth edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) revision of all clauses except 531 and 534;
- b) introduction of a new Clause 537 Monitoring;
- c) Clause 530 contains all normative references and all terms and definitions.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The reader's attention is drawn to the fact that Annex F lists all of the "in-some-country" clauses on differing practices relating to the subject of this standard.

A list of all parts in the IEC 60364 series, published under the general title *Low-voltage electrical installations*, can be found on the IEC website.

The committee has decided that the contents of this document and its amendments will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- · withdrawn, or
- revised.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

LOW-VOLTAGE ELECTRICAL INSTALLATIONS -

Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

530.1 Scope

This document provides requirements for:

- a) isolation, switching, control and monitoring, and
- b) selection and erection of:
 - 1) devices for isolation, switching, control and monitoring, and
 - 2) devices to achieve compliance with measures of protection for safety.

530.2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60204-1, Safety of machinery – Electrical equipment of machines – Part 1: General requirements

IEC 60269-2, Low-voltage fuses – Part 2: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application) – Examples of standardized systems of fuses A to K

IEC 60269-3, Low-voltage fuses – Part 3: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications) – Examples of standardized systems of fuses A to F

IEC 60269-4, Low-voltage fuses – Part 4: Supplementary requirements for use-links for the protection of semiconductor devices

IEC 60309 (all parts), Plugs, socket-outlets and couplers for industrial purposes

IEC 60364 (all parts), Low-voltage electrical installations

IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock IEC 60364-4-41:2005/AMD1:2017

IEC 60364-4-42:2010, Low-voltage electrical installations – Part 4-42: Protection for safety – Protection against thermal effects IEC 60364-4-42:2010/AMD1:2014

IEC 60364-4-43:2008, Low-voltage electrical installations – Part 4-43: Protection for safety – Protection against overcurrent

IEC 60364-4-44:2007, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances IEC 60364-4-44:2007/AMD1:2015

IEC 60364-5-55, Electrical installations of buildings – Part 5-55: Selection and erection of electrical equipment – Other equipment

IEC 60364-6:2016, Low voltage electrical installations- Part 6: Verification

IEC 60417 (all parts), Graphical symbols for use on equipment

IEC 60664-1:2007, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 60669-1, Switches for household and similar fixed-electrical installations – Part 1: General requirements

IEC 60669-2-1, Switches for household and similar fixed electrical installations – Part 2-1: Particular requirements – Electronic switches

IEC 60669-2-2, Switches for household and similar fixed electrical installations – Part 2-2: Particular requirements – Electromagnetic remote-control switches (RCS)

IEC 60669-2-3, Switches for household and similar fixed electrical installations – Part 2-3: Particular requirements – Time-delay switches (TDS)

IEC 60669-2-4, Switches for household and similar fixed electrical installations – Part 2-4: Particular requirements – Isolating switches

IEC 60669-2-5, Switches for household and similar fixed electrical installations – Part 2-5: Particular requirements – Switches and related accessories for use in home and building electronic systems (HBES)

IEC 60669-2-6, Switches for household and similar fixed electrical installations – Part 2-6: Particular requirements – Fireman's switches for exterior and interior signs and luminaires

IEC 60670-24, Boxes and enclosures for electrical accessories for household and similar fixed electrical installations – Part 24: Particular requirements for enclosures for housing protective devices and other power dissipating electrical equipment

IEC 60884 (all parts), Plugs and socket-outlets for household and similar purposes

IEC 60898 (all parts), Electrical accessories – Circuit-breakers for overcurrent protection for household and similar installations

IEC 60906 (all parts), IEC system of plugs and socket-outlets for household and similar purposes

IEC 60947-2:2016, Low-voltage switchgear and controlgear - Part 2: Circuit-breakers

IEC 60947-3, Low-voltage switchgear and controlgear – Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units

IEC 60947-4-1, Low-voltage switchgear and controlgear – Part 4-1: Contactors and motor-starters – Electromechanical contactors and motor-starters

IEC 60947-4-2, Low-voltage switchgear and controlgear – Part 4-2: Contactors and motor-starters – AC semiconductor motor controllers and starters

IEC 60947-4-3, Low-voltage switchgear and controlgear – Part 4-3: Contactors and motor-starters – AC semiconductor controllers and contactors for non-motor loads

IEC 60947-5-1, Low-voltage switchgear and controlgear – Part 5-1: Control circuit devices and switching elements – Electromechanical control circuit devices

IEC 60947-6-1, Low-voltage switchgear and controlgear – Part 6-1: Multiple function equipment – Transfer switching equipment

IEC 60947-6-2, Low-voltage switchgear and controlgear – Part 6-2: Multiple function equipment – Control and protective switching devices (or equipment) (CPS)

IEC 61008 (all parts), Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs)

IEC 61009 (all parts), Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs)

IEC 61095, Electromechanical contactors for household and similar purposes

IEC 61439-2, Low-voltage switchgear and controlgear assemblies – Part 2: Power switchgear and controlgear assemblies

IEC 61439-3, Low-voltage switchgear and controlgear assemblies – Part 3: Distribution boards intended to be operated by ordinary persons (DBO)

IEC 61439-6, Low-voltage switchgear and controlgear assemblies – Part 6: Busbar trunking systems (busways)

IEC 61534 (all parts), Powertrack systems

IEC 61557-8, Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems

IEC 61557-9, Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 9: Equipment for insulation fault location in IT systems

IEC 61643-11, Low-voltage surge protective devices – Part 11: Surge protective devices connected to low-voltage power systems – Requirements and test methods

IEC 61643-12, Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power distribution systems – Selection and application principles

IEC 61984:2008, Connectors – Safety requirements and tests

IEC 61995 (all parts), Devices for the connection of luminaires for household and similar purposes

IEC 62020, Electrical accessories – Residual current monitors for household and similar uses (RCMs)

IEC 62208, Empty enclosures for low-voltage switchgear and controlgear assemblies – General requirements

IEC 62305 (all parts), Protection against lightning

IEC 62423, Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses

IEC 62606, General requirements for arc fault detection devices

IEC 62626-1, Low-voltage switchgear and controlgear enclosed equipment – Part 1: Enclosed switch-disconnectors outside the scope of IEC 60947-3 to provide isolation during repair and maintenance work